
Chapter 4

Convergence in metric spaces

4.1 Definition of a convergent sequence

Definition 4.1.1. (Convergent sequence). Let (X, d) be a metric space.

We say that a sequence (xn)n∈N ⊂ X converges to the limit x ∈ X if

∀ε > 0∃N(ε) ∈ N such that ∀n ∈ N, n ≥ N(ε) =⇒ d(xn, x) < ε. (4.1)

In that case we write xn −→ x as n −→∞, or lim
n−→∞

xn = x

If a sequence has no limit we say that it diverges.

Remarks 4.1.2. 1. Comparing with the definition of a convergent sequence

of real numbers from Real Analysis we see that a sequence (xn)n∈N ⊂
X converges to the limit x ∈ X if and only if the distance between xn

and x converges to zero in R, i.e.

lim
n−→∞

d(xn, x) = 0

in the sense of Real Analysis.

2. The limit of a convergent sequence is unique. Indeed, assume that

(xn)n∈N converges simultaneously to x ∈ X and to another limit y ∈
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X. Then using the triangle inequality we obtain

d(x, y) ≤ d(x, xn) + d(xn, y) −→ 0 as n −→∞.

Since the right hand side converges to zero, we conclude that d(x, y) =

0 and hence x = y.

Definition 4.1.3. (Bounded set). Let (X, d) be a metric space and E ⊂ X

be a subset of X. We say that the set E is bounded in X if there exists a

ball BR(x) ⊂ X such that E ⊂ BR(x). If the set E is not bounded then it

is said to be unbounded. We say that a sequence (xn)n∈N ⊂ X is bounded

if {xn}n∈N is a bounded subset of X.

Example 4.1.4. 1. Let X = R. The [a, b] is bounded.

2. Let X = R2. The (a, b)× (a, b) is bounded.

3. Let X = R. Then N is unbounded.

4. Let X = R2. Then (a, b)× R is unbounded.

Theorem 4.1.5. Let (X, d) be a metric space. If a sequence (xn)n∈N con-

verges to a limit in X then (xn)n∈N is bounded.

Using the notion of convergence we could give an important character-

isation of closed sets in terms of convergent sequences.

Theorem 4.1.6. Let (X, d) be a metric space. A set F ⊂ X is closed if

and only if every convergent sequence (xn)n∈N ⊂ F has its limit in F , that

is

(xn) ⊂ F and lim
n−→∞

xn = x =⇒ x ∈ F (4.2)

Definition 4.1.7. (Closure of a set). Let (X, d) be a metric space and

E ⊂ X a subset of X. The closure of the set E is the set

cl(E) = int(E) ∪ ∂E
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It is clear that the closure of a set E is always a closed set. The closure

cl(E) can be characterised as the smallest closed set which contains E. In

particular, if E is a closed set then cl(E) = E.

Definition 4.1.8. (Dense set). Let (X, d) be a metric space and E ⊂ X

a nonempty subset of X. The set E is dense in X if cl(E) = X.

Example 4.1.9. Let X = R. Then cl((0, 1)) = [0, 1] and cl(Q) = R. In

particular, the set of all rational numbers Q is dense in R.

Example 4.1.10. Let BR(a) be an open ball in the Euclidean space RN .

Then

cl(BR(a)) = B̄R(a) = {x ∈ X|d(x, a) ≤ r}

In particular, closed ball B̄R(a) is a closed set in RN .

4.2 Convergence of sequences in RN

To avoid confusion between coordinates of the vector in RN and elements of

the sequence of vectors in RN , we sometime will be using the upper-script

index notation (x(n))n∈N to denote a sequence of vectors in RN , where

x(n) = (x
(n)
1 , x

(n)
2 , · · · , x(n)N )

For each i = 1, · · · , N , the sequence (x
(n)
i )n∈N ⊂ R is called the sequences

of i-coordinates of the sequence (x(n)).

The next result shows that a sequence of vectors in RN converges if and

only if each sequence of coordinates converges individually.

Proposition 4.2.1. (Convergence in RN). Let RN be the N-dimensional

vector space with the standard Euclidean metric d2(x, y). A sequence

(x(n))n∈N = (x
(n)
1 , x

(n)
2 , · · · , x(n)N )n∈N
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converges in RN to the limit

x = (x1, x2, · · · , xN)

i.e. lim
n∈N

x(n) = x, if and only if

lim
n∈N

x
(n)
1 = x1, lim

n∈N
x
(n)
2 = x2, · · · , lim

n∈N
x
(n)
N = xN

Remark 4.2.2. The same statement is true if instead of the Euclidean metric

d2(x, y) we consider convergence in RN with respect to the taxi-cab metric

d1(x, y) or ∞−metric d∞(x, y). In fact, one can show that the following

three statements are equivalent:

(a) A sequence (x(n)) ⊂ RN converges to a vector x ∈ RN in the metrics d1

(b) A sequence (x(n)) ⊂ RN converges to a vector x ∈ RN in the metrics d2

(c) A sequence (x(n)) ⊂ RN converges to a vector x ∈ RN in the metrics d∞

Because of the equivalence of (a), (b) and (c) we say that the metrics d1,

d2, d∞ on RN are equivalent, in the sense that they have the same classes

of convergent sequences.

Example 4.2.3. Consider the following sequences in R2. Try to sketch

on the plane R2 geometrical location of several points of the sequences in

examples (1)-(5)

1. (x(n))n∈N =
(
1
n , 1−

1
n

)
.

2. (x(n))n∈N =
(
1
n ,

1
n2

)
.

3. (x(n))n∈N =
(
1
n ,
√
n
)
.

4. (x(n))n∈N =
(
cos( 1n), sin( 1n)

)
.

5. (x(n))n∈N = (sin(nπ), cos(nπ)).
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4.3 Cauchy Sequences

Definition 4.3.1. (Cauchy sequence). Let (X, d) be a metric space. A

sequence (xn)n∈N ⊂ X is called a Cauchy sequence if ∀ε > 0,∃N(ε) ∈ N
such that

∀n,m ∈ N, n ≥ N(ε),m ≥ N(ε) =⇒ d(xm, xn) < ε

Theorem 4.3.2. Let (X, d) be a metric space. Then every convergent

sequence is also a Cauchy sequence.

Definition 4.3.3. (Complete metric space). Let (X, d) be a metric space.

We say that X is complete if every Cauchy sequence (xn)n∈N ⊂ X converges

to the limit in X.

Example 4.3.4. The real line R with the standard metric d1(x, y) = |x−y|
is complete.

Example 4.3.5. The set of all rational numbers Q with the standard

metric d1(x, y) = |x− y| is not complete.

Example 4.3.6. The N−dimensional vector space RN with any of the

metrics d1, d2, d∞ is complete. This follows from the completeness of the

real line R via Proposition 4.2.1

4.4 Compact sets

Definition 4.4.1. (Compact set). Let (X, d) be a metric space and K ⊂ X

a subset of X. We say a set K is compact if every sequence (xn) ⊂ K

contains at least one convergent subsequence (xnk) and

lim
k−→∞

xnk −→ x ∈ K.
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Remark 4.4.2. In particular, we say that a metric space (X, d) is compact

if every sequence (xn) ⊂ X contain at least one convergent subsequence.

Example 4.4.3. Every bounded closed interval [a, b] ⊂ R is compact.

This is the Bolzano-Weierstrass Theorem. However, the real line R with

the standard metric is not compact. For instance, the sequence xn = n

does not contain any convergent subsequence.

Theorem 4.4.4. Let (X, d) be a metric space. If a nonempty subset K ⊂
X is compact then K is bounded and closed.

Theorem 4.4.5. (Heine-Borel). Let RN be the Euclidean space. A subset

K ⊂ RN is compact if and only if K is bounded and closed.

Corollary 4.4.6. Let RN be the Euclidean space. Then any bounded se-

quence (xn) ⊂ RN has a convergent subsequence.

Remark 4.4.7. The same statement is true if instead of the Euclidean metric

d2(x, y) we consider the taxi-cab metric d1(x, y) or ∞−metric d∞(x, y).

This is a consequence of the fact that all three metrics on RN are equivalent,

see Remark 4.2.2

Proposition 4.4.8. Let (X, d) be a metric space and K ⊂ X be a compact

subset from X. If M ⊂ K is closed then M is compact.6

Proposition 4.4.9. (from H.W-oct-1-sol. page 2)

In RN the intersection of arbitrary many compact set is compact

Proposition 4.4.10. Let (X, d) be a metric space.

1. If K1, K2, · · · , Kn ⊂ X is a finite collection of compact sets, then the

union
n⋃
i=1

Ki is also compact.

2. If X ⊃ K1 ⊃ K2 ⊃ · · · ⊃ Kn is a nested sequence of nonempty

compact sets then the intersection
⋂
i∈NKi is nonempty.
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