Chapter 4

Convergence in metric spaces

4.1 Definition of a convergent sequence

Definition 4.1.1. (Convergent sequence). Let (X, d) be a metric space. We say that a sequence $(x_n)_{n\in\mathbb{N}}\subset X$ converges to the limit $x\in X$ if

$$\forall \epsilon > 0 \exists N(\epsilon) \in \mathbb{N} \text{ such that } \forall n \in \mathbb{N}, n \ge N(\epsilon) \Longrightarrow d(x_n, x) < \epsilon.$$
 (4.1)

In that case we write $x_n \longrightarrow x$ as $n \longrightarrow \infty$, or $\lim_{n \longrightarrow \infty} x_n = x$

If a sequence has no limit we say that it diverges.

Remarks 4.1.2. 1. Comparing with the definition of a convergent sequence of real numbers from Real Analysis we see that a sequence $(x_n)_{n\in\mathbb{N}}\subset X$ converges to the limit $x\in X$ if and only if the distance between x_n and x converges to zero in \mathbb{R} , i.e.

$$\lim_{n \to \infty} d(x_n, x) = 0$$

in the sense of Real Analysis.

2. The limit of a convergent sequence is unique. Indeed, assume that $(x_n)_{n\in\mathbb{N}}$ converges simultaneously to $x\in X$ and to another limit $y\in$

X. Then using the triangle inequality we obtain

$$d(x,y) \le d(x,x_n) + d(x_n,y) \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

Since the right hand side converges to zero, we conclude that d(x, y) = 0 and hence x = y.

Definition 4.1.3. (Bounded set). Let (X, d) be a metric space and $E \subset X$ be a subset of X. We say that the set E is bounded in X if there exists a ball $B_R(x) \subset X$ such that $E \subset B_R(x)$. If the set E is not bounded then it is said to be unbounded. We say that a sequence $(x_n)_{n \in \mathbb{N}} \subset X$ is bounded if $\{x_n\}_{n \in \mathbb{N}}$ is a bounded subset of X.

Example 4.1.4. 1. Let $X = \mathbb{R}$. The [a, b] is bounded.

- 2. Let $X = \mathbb{R}^2$. The $(a, b) \times (a, b)$ is bounded.
- 3. Let $X = \mathbb{R}$. Then \mathbb{N} is unbounded.
- 4. Let $X = \mathbb{R}^2$. Then $(a, b) \times \mathbb{R}$ is unbounded.

Theorem 4.1.5. Let (X,d) be a metric space. If a sequence $(x_n)_{n\in\mathbb{N}}$ converges to a limit in X then $(x_n)_{n\in\mathbb{N}}$ is bounded.

Using the notion of convergence we could give an important characterisation of closed sets in terms of convergent sequences.

Theorem 4.1.6. Let (X,d) be a metric space. A set $F \subset X$ is closed if and only if every convergent sequence $(x_n)_{n\in\mathbb{N}} \subset F$ has its limit in F, that is

$$(x_n) \subset F \text{ and } \lim_{n \to \infty} x_n = x \Longrightarrow x \in F$$
 (4.2)

Definition 4.1.7. (Closure of a set). Let (X, d) be a metric space and $E \subset X$ a subset of X. The closure of the set E is the set

$$\operatorname{cl}(E) = \operatorname{int}(E) \cup \partial E$$

It is clear that the closure of a set E is always a closed set. The closure cl(E) can be characterised as the smallest closed set which contains E. In particular, if E is a closed set then cl(E) = E.

Definition 4.1.8. (Dense set). Let (X, d) be a metric space and $E \subset X$ a nonempty subset of X. The set E is dense in X if cl(E) = X.

Example 4.1.9. Let $X = \mathbb{R}$. Then $\operatorname{cl}((0,1)) = [0,1]$ and $\operatorname{cl}(\mathbb{Q}) = \mathbb{R}$. In particular, the set of all rational numbers \mathbb{Q} is dense in \mathbb{R} .

Example 4.1.10. Let $B_R(a)$ be an open ball in the Euclidean space \mathbb{R}^N . Then

$$cl(B_R(a)) = \bar{B}_R(a) = \{x \in X | d(x, a) \le r\}$$

In particular, closed ball $\bar{B}_R(a)$ is a closed set in \mathbb{R}^N .

4.2 Convergence of sequences in \mathbb{R}^N

To avoid confusion between coordinates of the vector in \mathbb{R}^N and elements of the sequence of vectors in \mathbb{R}^N , we sometime will be using the upper-script index notation $(x^{(n)})_{n\in\mathbb{N}}$ to denote a sequence of vectors in \mathbb{R}^N , where

$$x^{(n)} = (x_1^{(n)}, x_2^{(n)}, \cdots, x_N^{(n)})$$

For each $i = 1, \dots, N$, the sequence $(x_i^{(n)})_{n \in \mathbb{N}} \subset \mathbb{R}$ is called the sequences of *i*-coordinates of the sequence $(x^{(n)})$.

The next result shows that a sequence of vectors in \mathbb{R}^N converges if and only if each sequence of coordinates converges individually.

Proposition 4.2.1. (Convergence in \mathbb{R}^N). Let \mathbb{R}^N be the N-dimensional vector space with the standard Euclidean metric $d_2(x, y)$. A sequence

$$(x^{(n)})_{n\in\mathbb{N}} = (x_1^{(n)}, x_2^{(n)}, \cdots, x_N^{(n)})_{n\in\mathbb{N}}$$

converges in \mathbb{R}^N to the limit

$$x = (x_1, x_2, \cdots, x_N)$$

i.e.
$$\lim_{n \in \mathbb{N}} x^{(n)} = x$$
, if and only if $\lim_{n \in \mathbb{N}} x_1^{(n)} = x_1$, $\lim_{n \in \mathbb{N}} x_2^{(n)} = x_2$, \cdots , $\lim_{n \in \mathbb{N}} x_N^{(n)} = x_N$

Remark 4.2.2. The same statement is true if instead of the Euclidean metric $d_2(x,y)$ we consider convergence in \mathbb{R}^N with respect to the taxi-cab metric $d_1(x,y)$ or ∞ -metric $d_\infty(x,y)$. In fact, one can show that the following three statements are equivalent:

- (a) A sequence $(x^{(n)}) \subset \mathbb{R}^N$ converges to a vector $x \in \mathbb{R}^N$ in the metrics d_1
- (b) A sequence $(x^{(n)}) \subset \mathbb{R}^N$ converges to a vector $x \in \mathbb{R}^N$ in the metrics d_2
- (c) A sequence $(x^{(n)}) \subset \mathbb{R}^N$ converges to a vector $x \in \mathbb{R}^N$ in the metrics d_{∞} Because of the equivalence of (a), (b) and (c) we say that the metrics d_1 , d_2 , d_{∞} on \mathbb{R}^N are equivalent, in the sense that they have the same classes of convergent sequences.

Example 4.2.3. Consider the following sequences in \mathbb{R}^2 . Try to sketch on the plane \mathbb{R}^2 geometrical location of several points of the sequences in examples (1)-(5)

1.
$$(x^{(n)})_{n \in \mathbb{N}} = (\frac{1}{n}, 1 - \frac{1}{n}).$$

2.
$$(x^{(n)})_{n\in\mathbb{N}} = (\frac{1}{n}, \frac{1}{n^2}).$$

3.
$$(x^{(n)})_{n \in \mathbb{N}} = (\frac{1}{n}, \sqrt{n}).$$

4.
$$(x^{(n)})_{n \in \mathbb{N}} = (\cos(\frac{1}{n}), \sin(\frac{1}{n})).$$

5.
$$(x^{(n)})_{n\in\mathbb{N}} = (\sin(n\pi), \cos(n\pi)).$$

4.3 Cauchy Sequences

Definition 4.3.1. (Cauchy sequence). Let (X, d) be a metric space. A sequence $(x_n)_{n\in\mathbb{N}}\subset X$ is called a Cauchy sequence if $\forall \epsilon>0, \exists N(\epsilon)\in N$ such that

$$\forall n, m \in \mathbb{N}, n \ge N(\epsilon), m \ge N(\epsilon) \Longrightarrow d(x_m, x_n) < \epsilon$$

Theorem 4.3.2. Let (X, d) be a metric space. Then every convergent sequence is also a Cauchy sequence.

Definition 4.3.3. (Complete metric space). Let (X, d) be a metric space. We say that X is complete if every Cauchy sequence $(x_n)_{n\in\mathbb{N}}\subset X$ converges to the limit in X.

Example 4.3.4. The real line \mathbb{R} with the standard metric $d_1(x,y) = |x-y|$ is complete.

Example 4.3.5. The set of all rational numbers \mathbb{Q} with the standard metric $d_1(x,y) = |x-y|$ is not complete.

Example 4.3.6. The N-dimensional vector space \mathbb{R}^N with any of the metrics d_1, d_2, d_∞ is complete. This follows from the completeness of the real line \mathbb{R} via Proposition 4.2.1

4.4 Compact sets

Definition 4.4.1. (Compact set). Let (X, d) be a metric space and $K \subset X$ a subset of X. We say a set K is compact if every sequence $(x_n) \subset K$ contains at least one convergent subsequence (x_{n_k}) and

$$\lim_{k \to \infty} x_{n_k} \longrightarrow x \in K.$$

Remark 4.4.2. In particular, we say that a metric space (X, d) is compact if every sequence $(x_n) \subset X$ contain at least one convergent subsequence.

Example 4.4.3. Every bounded closed interval $[a, b] \subset \mathbb{R}$ is compact. This is the Bolzano-Weierstrass Theorem. However, the real line \mathbb{R} with the standard metric is not compact. For instance, the sequence $x_n = n$ does not contain any convergent subsequence.

Theorem 4.4.4. Let (X, d) be a metric space. If a nonempty subset $K \subset X$ is compact then K is bounded and closed.

Theorem 4.4.5. (Heine-Borel). Let \mathbb{R}^N be the Euclidean space. A subset $K \subset \mathbb{R}^N$ is compact if and only if K is bounded and closed.

Corollary 4.4.6. Let \mathbb{R}^N be the Euclidean space. Then any bounded sequence $(x_n) \subset \mathbb{R}^N$ has a convergent subsequence.

Remark 4.4.7. The same statement is true if instead of the Euclidean metric $d_2(x,y)$ we consider the taxi-cab metric $d_1(x,y)$ or ∞ -metric $d_{\infty}(x,y)$. This is a consequence of the fact that all three metrics on \mathbb{R}^N are equivalent, see Remark 4.2.2

Proposition 4.4.8. Let (X,d) be a metric space and $K \subset X$ be a compact subset from X. If $M \subset K$ is closed then M is compact. 6

Proposition 4.4.9. (from H.W-oct-1-sol. page 2) In \mathbb{R}^N the intersection of arbitrary many compact set is compact

Proposition 4.4.10. Let (X, d) be a metric space.

- 1. If $K_1, K_2, \dots, K_n \subset X$ is a finite collection of compact sets, then the union $\bigcup_{i=1}^n K_i$ is also compact.
- 2. If $X \supset K_1 \supset K_2 \supset \cdots \supset K_n$ is a nested sequence of nonempty compact sets then the intersection $\bigcap_{i \in \mathbb{N}} K_i$ is nonempty.